6 resultados para enzyme inhibition

em University of Queensland eSpace - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purple acid phosphatases (PAPs) belong to the family of binuclear metallohydrolases and catalyse the hydrolysis of a large group of phosphoester substrates at acidic pH. Despite structural conservation in their active sites PAPs appear to display mechanistic versatility. Here, aspects of the catalytic mechanism of two PAPs are investigated using the inhibitors vanadate and fluoride as probes. While the magnitude of their vanadate inhibition constants are similar the two enzymes differ with respect to the mode of inhibition; vanadate interacts in a non-competitive fashion with pig PAP (K-i = 40 mu mol L-1) while it inhibits red kidney bean PAP competitively (K-i = 30 mu mol L-1). Similarly, fluoride also acts as a competitive inhibitor for red kidney bean PAP, independent of pH, while the inhibition of pig PAP by fluoride is uncompetitive at low pH and non-competitive at higher pH, independent of metal ion composition. Furthermore, while fluoride acts as a slow-binding inhibitor in pig PAP it binds rapidly to the catalytic site of the red kidney bean enzyme. Since vanadate and fluoride are proposed to act as transition state and nucleophile mimics, respectively, the observed differences in inhibition kinetics indicate subtle but distinct variations in the reaction mechanism of these enzymes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose of review Heart failure and diabetes mellitus are frequently associated, and diabetes appears to potentiate the clinical presentation of heart failure related to other causes. The purpose of this review is to examine recent advances in the application of tissue Doppler imaging for the assessment of diabetic heart disease. Recent findings Recent studies have documented that both myocardial systolic and diastolic abnormalities can be identified in apparently healthy patients with diabetes and no overt cardiac dysfunction. Interestingly, these are disturbances of longitudinal function, with compensatory increases of radial function-suggesting primary involvement of the subendocardium, which is a hallmark of myocardial ischemia. Despite this, there is limited evidence that diabetic microangiopathy is responsible-with reduced myocardial blood volume rather than reduced resting flow, and at least some evidence suggesting a normal increment of tissue velocity with stress. Finally, a few correlative studies have shown association of diabetic myocardial disease with poor glycemic control, while angiotensin converting enzyme inhibition may be protective. Summary Tissue Doppler imaging (and the related technique of strain rate imaging) appears to be extremely effective for the identification of subclinical LV dysfunction in diabetic patients It is hoped that the recognition of this condition will prompt specific therapy to prevent the development of overt LV dysfunction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Angiotensin converting enzyme inhibitors (ACEI) have been proven beneficial to the cardiac-compromised patient, but whether there is an advantage associated with using a tissue-active or systemically-active ACEI is debatable. An investigation into the clinical benefits of tissue ACEI for veterinary patients was undertaken by comparing enalapril with ramipril. Results obtained concluded that although there is much evidence to prove that tissue ACEIs are superior over systemic ACEIs at the cellular level, this does not correlate in the clinical sense. Both enalapril and ramipril provided similar clinical benefits to the cardiac-compromised patient.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ketol-acid reductoisomerase (EC 1.1.1.86) catalyses the second reaction in the biosynthesis of the branched-chain amino acids. The reaction catalyzed consists of two stages, the first of which is an alkyl migration from one carbon atom to its neighbour. The likely transition state is therefore a cyclopropane derivative, and cyclopropane-1,1-dicarboxylate(CPD) has been reported to inhibit the Escherichia coli enzyme. In addition, this compound causes the accumulation of the substrate of ketol-acid reductoisomerase in plants. Here, we investigate the inhibition of the purified rice enzyme. The cDNA was cloned, and the recombinant protein was expressed in E. coli, purified and characterized kinetically. The purified enzyme is strongly inhibited by cyclopropane-1,1-dicarboxylate, with an inhibition constant of 90 nM. The inhibition is time-dependent and this is due to the low rate constants for formation (2.63 X 10(5) M-1 min(-1)) and dissociation (2.37 x 10(-2) min(-1)) of the enzyme-inhibitor complex. Other cyclopropane derivatives are much weaker inhibitors while dimethylmalonate is moderately effective. (c) 2004 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Echinacea preparations are widely used herbal remedies for the prevention and treatment of colds. In this study we have investigated the metabolism by human liver microsomes of the alkylamide components from an Echinacea preparation as well as that of pure synthetic alkylamides. No significant degradation of alkylamides was evident in cytosolic fractions. Time and NADPH-dependent degradation of alkylamides was observed in microsomal fractions suggesting they are metabolised by cytochrome P450 (P450) enzymes in human liver. There was a difference in the susceptibility of 2-ene and 2,4-diene pure synthetic alkylamides to microsomal degradation with (2E)-N-isobutylundeca-2-ene-8,10-diynamide (1) metabolised to only a tenth the extent of (2E,4E,8Z,IOZ)-N-isobutyldodeca-2,4,8,10-tetracnamide (3) under identical incubation conditions. Markedly less degradation of 3 was evident in the mixture of alkylamides present in an ethanolic Echinacea extract, suggesting that metabolism by liver P450s was dependent both on their chemistry and the combination present in the incubation. Co-incubation of 1 with 3 at equimolar concentrations resulted in a significant decrease in the metabolism of 3 by liver microsomes. This inhibition by 1, which has a terminal alkyne moiety, was found to be time- and concentration-dependent, and due to a mechanism-based inactivation of the P450s. Alkylamide metabolites were detected and found to be the predicted epoxidation, hydroxylation and dealkylation products. These findings suggest that Echinacea may effect the P450-mediated metabolism of other concurrently ingested pharmaceuticals. (c) 2005 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acetohydroxyacid synthase (Ec 2.2.1.6) catalyses the thiamine diphosphate-dependent reaction between two molecules of pyruvate yielding 2-acetolactacte and CO2. The enzyme will also utilise hydroxypyruvate with a k(cat) value that is 12% of that observed with pyruvate. When hydroxypyruvate is the substrate, the enzyme undergoes progressive inactivation with kinetics that are characteristic of suicide inhibition. It is proposed that the dihydroxyethyl-thiamine diphosphate intermediate can expel a hydroxide ion forming an enol that rearranges to a bound acetyl group.